
A short introduction to time series analysis in R 
 

The key point in time series analysis is that observations tend to 
show serial temporal autocorrelation that needs to be accounted for 
in statistical analyses. 
 
Example 1 
 
For example, let´s create a time series of points ranging from pi to 
n*pi in steps or 0.1: 
 
my.ts=sin(seq(pi,10*pi,0.1)) 
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To tell R that these data actually represent a time series, we need 
to re-define the sequence to be a time series; let us assume that 
the time series starts in the year 1800: 
 
my.ts=ts(my.ts,start=1800) 
plot(my.ts) 
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Now we know exactly that these data points are perfectly 
autocorrelated; this means, for each point n it is known that the 
next (n+k) points will follow a sine function. 
 
Let us see what R´s built-in autocorrelation function tells us: 
 
acf(my.ts,lag.max=100) 
 
 

 
What we can see from this plot is that the underlying data-
generating sine function is correctly represented in the 
autocorrelation function. We do, however, see a slight decline in 
the acf with increasing lag due to small prediction errors. However, 
this autocorrelation is highly significant (indicated by all 
vertical lines crossing the dashed horizontal ones). 
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What about the numerical values of this autocorrelation function? 
 
acf(my.ts,lag.max=100,plot=F) 
 
>Autocorrelations of series 'my.ts', by lag 
 
     0      1      2      3      4      5      6      7      8      9     10  
 1.000  0.995  0.980  0.955  0.922  0.879  0.828  0.768  0.702  0.629  0.551  
    11     12     13     14     15     16     17     18     19     20     21  
 0.467  0.380  0.289  0.196  0.102  0.007 -0.086 -0.179 -0.268 -0.355 -0.437  
    22     23     24     25     26     27     28     29     30     31     32  
-0.514 -0.586 -0.651 -0.709 -0.760 -0.803 -0.837 -0.863 -0.880 -0.888 -0.887  
    33     34     35     36     37     38     39     40     41     42     43  
-0.878 -0.860 -0.833 -0.798 -0.756 -0.707 -0.651 -0.589 -0.521 -0.449 -0.373  
    44     45     46     47     48     49     50     51     52     53     54  
-0.294 -0.213 -0.131 -0.048  0.035  0.117  0.197  0.274  0.348  0.418  0.483  
    55     56     57     58     59     60     61     62     63     64     65  
 0.542  0.596  0.643  0.683  0.717  0.742  0.760  0.771  0.773  0.768  0.755  
    66     67     68     69     70     71     72     73     74     75     76  
 0.735  0.708  0.673  0.633  0.586  0.534  0.478  0.417  0.352  0.284  0.215  
    77     78     79     80     81     82     83     84     85     86     87  
 0.144  0.072  0.000 -0.072 -0.141 -0.209 -0.274 -0.336 -0.394 -0.447 -0.496  
    88     89     90     91     92     93     94     95     96     97     98  
-0.538 -0.576 -0.607 -0.632 -0.650 -0.661 -0.666 -0.665 -0.657 -0.642 -0.621  
    99    100  
-0.595 -0.562 

 
The spectrum() function provides a spectral decomposition of our 
time series: 
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The spectrum has a maximum value at about 0.03 (which is on a log 
scale), for which also a confidence estimate is given (the vertical 
bar to the right). 
 



In summary, the periodogram shows that the cycles have a period of 
about 1/0.03=33 years. Let us check if this approximation holds: 
 
We know from the autocorrelation function that there is a local 
minimum in the year 1816 (roughly 0.0); the value at 1831 is almost 
perfectly negatively correlated with the one from 1800, and the 
cycle approaches zero again in 1848. The next maximum is in 1863, 
and so on. Thus, our autocorrelation function predicts a period of 
about (1863-1831)=32 years. 
 
This is well in accordance with our above guess of 33 years. 
 
An inspection of the first few values from the 1817 onward gives: 
 
par(tck=1) 
plot(my.ts,type="l",xlim=c(1817,1851)) 
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Let us now inspect the partial autocorrelation function: 
 
plot(acf(my.ts,type="p")) 
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acf(my.ts,type="p",plot=F) 
 
>Partial autocorrelations of series 'my.ts', by lag 
 
     1      2      3      4      5      6      7      8      9     10     11  
 0.995 -0.985 -0.266 -0.075 -0.020 -0.004  0.001  0.002  0.003  0.003  0.002  
    12     13     14     15     16     17     18     19     20     21     22  
 0.002  0.002  0.001  0.001  0.001  0.000  0.000 -0.001 -0.001 -0.001 -0.002  
    23     24  
-0.002 -0.002 
 

We see that at lags 2 and 3 the partial acf is significant, 
but after that nothing more goes on. 
 
One important thing to remember here is that it may be 
difficult to infer about mechanisms by looking at the dynamics 
of a system. Thus, while we can well inspect the dynamical 
behavior of our time series cycles, mathematical tools would 
be needed to detect the underlying function that has generated 
the time series. 
______________________________________________________________ 
 
Example 2 
 
Now let us examine a time series that has a linear trend. We 
can create the trend artificially like this: 
 
x=seq(pi,10*pi,0.1) 
my.ts=0.1*x+sin(x) 
 
 



We thus have a sine function to which a linear function has 
been added. The two components are: 
 

a) y=sin(x) 
 

 
 

 
b) 0.1*x 

 
 

 
 let us now inspect the combined "pse
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So udo time series": 
 
 
my.ts=0.1*x+sin(x) 
my.ts=ts(my.ts,start=1800) 
plot(my.ts) 
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First of all, we can again check for autocorrelation in this 

 
 

rther, we could look at a spectr time 

 
 

w let us test for a linear trend (of 

 

time series: 
 
plot(acf(my.ts,lag.max=100)) 
 

Series  my.ts

 
Fu al decomposition of the 
series: 
 
spectrum(my.ts) 
 

 
 
No  in this time series 
which we know it is there): 
 
model1=lm(my.ts~I(1801:2083)) 
summary(model1) 
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plot(my.ts) 
abline(model1) 
 
 

 
 
Finally, the summary(model1) command gives: 
 
Call: 
lm(formula = my.ts ~ I(1801:2083)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.9295 -0.6860 -0.0790  0.6985  1.0706  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -1.776e+01  9.981e-01  -17.79   <2e-16 *** 
I(1801:2083)  9.995e-03  5.135e-04   19.46   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.7057 on 281 degrees of freedom 
Multiple R-Squared: 0.5741,     Adjusted R-squared: 0.5726  
F-statistic: 378.9 on 1 and 281 DF,  p-value: < 2.2e-16 
 
 
We conclude that the model has an intercept of -1.77 and a 
slope of 0.01. Note that these values are for the time series 
starting at 1800. 
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Now, finally, let us de-trend the time series: 
 
detrended=my.ts-
predict(model1) 
 
plot(detrended) 
 

 
 
 

Which leaves us back with the two components we have used to 
create the time series initially. 
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